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ABSTRACT. An iterative stochastic approximation to the maximum likelihood estimate is
developed for the Strauss point process. We modify existing theorems to show that the
approximation is consistent and asymptotically normal. It performs well in numerical tests.
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1. Introduction

Parameter estimation for two-dimensional point pattern data is difficult, because most of the
available stochastic models have intractable likelihoods (see Ripley, 1977; 1988 & Diggle,
1983). An exception is the class of Gibbs or Markov point processes (Ripley & Kelly, 1977;
Baddeley & Mapller, 1989; Ripley, 1989), where the likelihood f(x; 6) typically forms an
exponential family and is given explicitly up to a normalising constant a(f). However, the
latter is not known analytically, so parameter estimates must be based on approximations
(Ogata & Tanemura, 1984; Penttinen, 1984; Diggle & Gratton, 1984; Ripley, 1988).

In this paper we present a simple recursive approximation to the MLE 6, based on the
Robbins—Monro stochastic approximation method. Estimates 6, are updated by comparing
the observed value of a sufficient statistic S = s(X) with a random value simulated from the
distribution specified by 8, :

A
Or 1 =04 + 1 (5(x) = s(X))

where x is the data and X, is one simulated observation from f{(-; 6,). Existing theorems
(Hall & Heyde, 1980) can be modified to show 8, is consistent and asymptotically normal (as
an approximation to 6).

We use a very simple point process model, the Strauss process, to illustrate and test the
method. Many other techniques are available for this case (see section 2) but we believe our
method could be applied to complex models where the others cannot. The aim of the present
paper is just to demonstrate that the Robbins—Monro method works in this simple case, and
to assess its performance.

The next section gives some background details about the point process setting and
previous work in the area. Section 3 studies the maximum likelihood estimator for the
Strauss model, with a numerical example. Section 4 recalls existing theorems for the
Robbins—Monro stochastic approximation method. Section 5 adapts them to our setting and
gives a numerical example. Section 6 ends with some discussion.

2. Background

Assume we have observed a pattern of points x = {x,, ..., x,,} in a planar window W. In
principle n is random. A pairwise interaction process is a stochastic model for x with density
S(x;0) = a(®) [ b(xi; 0) T exi x5 6) M

i<j
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where 8 is the parameter vector, b and ¢ are nonnegative functions, and « is the normalising
constant. Formally f(:; 8) is the Radon-Nikodym density of the distribution of x with
respect to the distribution of a Poisson point process m of intensity 1 (say) in W.
Alternatively, for each fixed n, equation (1) gives the joint probability density of the n points
X1, ..., X, up to a constant factor e~"w"/n!, where w = area(W).

A simple example is the Strauss process with parameter 8 = (f, y), in which b(-;-) =f§
and

y if |x, — x| <r
1 otherwise

c(x;, x;; 0) = {

where the “interaction distance” r > 0 is assumed to be fixed and known. This model has
density

fx;B.y) =aB, By @, p>0, 0<y<]l, (2)

(taking 0° = 1) where n(x) =n is the number of points in x, s(x) is the number of distinct
pairs x;, x; with ||x; — x;|| <r, and again a(8, y) is the normalising constant.

The parameter y represents interaction between points, with y =1 corresponding to a
Poisson process (no interaction) and y = 0 giving a so-called “hard core” process in which
no pair of points can come closer than distance r. Parameter f§ in (2) varies the point
intensity, e.g. if y =1 then the process is a Poisson process with intensity f. For further
information see Kelly & Ripley (1976), Ripley (1981, 1988), Diggle (1983) and Baddeley &
Moller (1989).

A numerical approximation to the MLE for some pairwise interaction models was
developed by Ogata & Tanemura (1984), who approximated Z(6) = a(f) ~! analytically using
virial expansions. However, the approximation is accurate only for sparse patterns.

The pseudo-likelihood estimator (Besag, 1977) could also be regarded as an analytic
approximation to the MLE, and would generally be a good approximation (Ripley, 1988).

Monte Carlo techniques have also been suggested. Numerical estimates of Z(6) can easily
be formed for all 6 by extensive simulations of the reference process only (or the process with
some fixed parameter value 6,). This would be computationally very expensive, and in
practice cannot be performed “before” the data analysis because of its dependence on other
parameters such as the geometry of the sampling window and the number of observed points.

Penttinen (1984) suggested solving the ML equation 8 log f(x; )/00 =0 by Newton-—
Raphson iteration, after estimating the mean and mean derivative of the efficient score by
simulation. When an approximate f is obtained, further simulations using this parameter
value are used to refine 6 itself and to estimate its variance.

Diggle & Gratton (1984) advocated Monte Carlo parameter estimation by matching some
chosen characteristic of the pattern, such as its reduced second-moment cumulative function
K(?), against the K function of the model, as evaluated through simulation. An iterative
optimization technique is used to find a value of § minimising (typically) the sum of squared
deviations between the K functions of data and (simulated) model. The choice of K is
appropriate because K(r) ~ (w/n?)E[s(X)] ignoring edge effects.

3. MLE for the conditional Strauss model

In this paper we consider the very simple Strauss model (2) and further simplify it by
conditioning on the observed number of points n(x) = n. We condition on n for simplicity in
the analysis of the Robbins—Monro method, and because it is easy to generate simulations
with fixed n by the discrete-time Markov chain method of Ripley (1979, 1987). The
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conditional model has density

,y.s'(x)

S =g, 0<y<] 3)
with respect to the binomial process (» i.i.d. uniform random points in W). The case y =0
is examined separately below. Here Z,(y) is the normalising constant, and s(x) the number
of pairs of distinct points closer than r units. The density (3) can be extended to y > 1 which
would correspond to a positive “clustering” of points. However, the unconditional model (2)
is not integrable for y > 1, so (3) could not be described as the “conditional” model with
respect to (2). It will sometimes be convenient to allow y > 1.

Clearly S =s(X) is sufficient for y, and has distribution

P ?*
zZ,()’

where p,, = P™{s(X) = k} is the distribution of s(X) for a binomial process of n points. This
is an exponential family of discrete distributions, the only complication being that the
reference distribution {p,.,k =0, 1, ...} is not known analytically. A Poisson approximation
to {p.. } is accurate when the data are sparse, i.e. when nnr?/w is small, see Ripley (1988).
However, this approximation is poor in cases of real interest.

The normalising constant in (3), (4) is

Z,(y) = E7py*)]

P, {S=k}= k=0,1,... (4)

=k§jop,,w" (5)

where E™[ - ] is expectation with respect to the binomial process, and m = n(n — 1)/2.

In principle, we could compute the likelihood by estimating {p,, } from extensive simula-
tions of a binomial process, and calculating (4) for all values of y. Equivalently, we could
estimate (5) directly as the empirical probability generating function of s(X). However, p,g
is typically close to zero, so if y is small then both numerator and denominator of (4) are
quite small and the simulation variance will be quite high. For small y it would be better to
estimate p,, (y) = P,{S =k} using

k
(‘}) Pk (Vo)
m y ! (6)
Z (3‘) Pn{(')’o)

=0 0,
for a reference value 7, that is close to y. Similar problems were noted by Penttinen (1984).
A further complication is that when y = 0 the conditional model in the form (3), (4) may
be undefined. This occurs when p,, = 0, i.e. when it is impossible (ignoring configurations of
measure zero) to place n points {x,} in the window W with ||x, — x;|| > r for all i #j, or
equivalently, to place n discs of radius r/2 with centres in W and without overlap. If W is
convex, a sufficient condition for this to occur is nnr?/4 > area(W) + r length(3 W) + nr2.
Let K be the minimum achievable value of s(X):

Prk (’Y) =

K =min{k : p,; > 0}. @)
Then the limit as y — 0 of the Strauss conditional density (3) is

Up.x ifs(x)=K
0 else

f,.(x;0+)={ (8)
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We henceforth use this distribution in place of (4) when y = 0. The corresponding limit
distribution of s(X) is degenerate, P{s(X) = K} = 1.

Now consider maximum likelihood estimation of y. Since y is confined to [0, 1] the
maximum is attained either at y =0, y =1 or at a zero of the derivative of f. For the latter
we have the usual ML estimating equations

s(x) — B,[s(X)] =0 &)

where x is the observed point pattern, and the expectation is with respect to (4). Equivalently

M@ = 50 (10)
where
dlogZ,
M@) =E,s(X)] =7 ——%y—@. (1)
From (11) and (5)
, i kpnkyk
Moy = 220 - =0 (12
i Y pur
k=0

so that M(0+) = K. Also M is infinitely differentiable with

o Z,Zh+vZ,Z,—YZ,)?
MQ) = o (13)

and in particular M’(0+) =p, x4 1/Pak-
Clearly s(X) is a minimum variance bound estimator of M(y), and for y >0

Var, [s(X)] =yM'(y) (14)

where the subscript y again means variance with respect to the distribution (4). This variance
is nonzero for y > 0, so

M@ >0, 0<y<l; (15)

so M(y) is an increasing continuous function, and (10) has a unique solution for
K < s(x) < M(1). Note that M(1) = E™(s(X)) <m = n(n — 1)/2 and there is no solution to
(10) for s(x) > M(1).

Thus

0 if s(x) =K
7 =<solution of (10) if K <s(x) < M(1) (16)
1 if s(x) = M(1)

and § is otherwise undefined. This is.the MLE for the parameter space [0, 1]; if we allow
y > 1 then 7 is the solution of (10) for all s(x) > K.

To visualize the degree of difficulty in solving (10), Fig. 1 shows estimates of M(y), M'(y)
and Var,[s(x)] obtained by extensive simulation. The window W was the unit square. We
simulated 10* realizations of Strauss processes with n = 25 points, r = 0.15 and y, = 0.001,
0.1, 0.25, 0.5 and 1. The distribution {p,(y)} of s(X) at intermediate values of y was
obtained by extrapolation using (6). The value of X was found to be 0. The mean and

variance of this distribution were then computed, giving M(y) and Var,[s(x)], and M'(y) was
obtained from (14).
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Fig. 1. Plots of (a) M(y); (b) M’'(y); (c) Var,[s(x)] against y, obtained through equation (6) by
simulating from Strauss processes with y,=0.001, 0.1, 0.25, 0.5, | in a unit square with n =25 and
r =0.15. Dotted line in each graph shows the Poisson approximation.

We expect M(y) to be approximately linear in y whenever the Poisson approximation holds
good, since if {p,} were Poisson(l) we would have Z,(y) =exp(A(y —1)) and
M(©y) =y(d log Z,/dy) = Ay. Under the sparse approximation A =n(n — 1)nr?/(2 area(W))
and this approximation is plotted in Fig. 1.

4. Robbins—~Monro procedure

The stochastic approximation procedure introduced by Robbins and Monro (1951) can be
used to estimate the solution 8* of an equation

Fo*) =¢

when there is very little information about the function F but where it is possible for any
given 6 to generate a random variable T, with expectation E(T,) = F(#). The original
application was to find the 50% survival probability point of a dose—response curve. For a
recent survey see Dupac (1984).

The R—M procedure generates a sequence of estimates 6, k =1,2,... by

1 =0k +a{d—Ts}, an
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where {a, } is a decreasing sequence of positive numbers such that
Ya=0w, Yai<o

and Ty, k=1,2,... are independent random variables generated according to some
parametric family of distributions {P,: 6 € I} such that E(T,,) = F(6,).

Following is a simplified list of regularity conditions on F condensed from Hall & Heyde
(1980) and Nevel’son & Has’minskii (1976):

(M1) Fis a Borel-measurable function; F(6*) = ¢ and
O —0*)F() —¢)>0 VO#6* 0O¢el

(M2) For some positive constants K, and K,, and for all
K\ |0 — 0% <|F(6) — ¢| < K,|6 — 6.

(M3) supye; Var[T,] < co.

(M4) F is differentiable at 8* and F'(6*) > 0.

(M5) For some >0
sup E|T, — F(O)P*" < co.

(M6) Var[T,] is a continuous function of 6, at least at § = §*.

It can be shown (see Hall & Heyde, 1980, p. 239) that under (M1)—(M3),
0,—0* (as.) (18)
In the special case
a,=Alk, (19)

under conditions (M1)—-(M6) we have

A%c?
kV¥0, —0%) > N{ 0, ——— 20
( k ) — ( ZA/J _ 1) ( )

in distribution, assuming the constant 4 satisfies

1

— 21
A> o (2D
where
p=F(0%, ¢*=Var[T]. (22

It is apparent from (20) that A4,,, = 1/u is the value of A that minimizes the asymptotic
variance of the normed R-M sequence k /%(§, — 6*); the minimal asymptotic variance being
a?jul.

In the case where 6 is known to lie in a bounded open interval I = (r,, r,), the algorithm
is modified to a clipped version

Ok w1 =16k +ac{d — Ty, }]:Zl’ (23)
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where

r, ifz<r,
[Zlp =<z ifr,<z<n,
rs ifz?rz.

One can see from Nevel'son & Has’minskii (1976, pp. 161-169) that the same limit results
(18) and (20) hold with (M2) replaced by

(M2’) F(6) is bounded for 6 € I.

5. The method

Returning to the conditional Strauss process model (3), our objective is to solve for § in
M(9) = s(x),

where x is the observed data and M(y) =E,s(X). This is an ideal application of the
Robbins—Monro method since for any given y we are able to generate a random variable T,
with expectation M(y) by simulating a Strauss process X, with parameter y and setting
T, =s(X,). The simulation is performed by running a birth-and-death process (Ripley,
1977, 1979; Baddeley & Mpiler, 1989) long enough to approach equilibrium.

Proposition
Suppose x is an observed realization of a conditional Strauss process (3). Let yy€(0, 1] be
arbitrary. Recursively form a sequence of estimates of § by

A 1
e 1= [n +4 s - S(X'yk)}:l , (29
0
where X, is a random point pattern simulated from f,(: ;7).
Then y, -7 (a.s.). Defining u=M'(9) and o*=Varys(X)], if A>1/(2u) then v, is
asymptotically normally distributed with mean § and variance A*c*/(24p —1).

Proof. We apply the results of section 4 with 8, 0*, F(6), ¢ and T, replaced by y, §, M(y),
s(x) and s(X,) respectively. Condition (M1) clearly holds since M(y) is a monotone
increasing function by (15). Conditions (M2), (M3) and (MS5) are all implied by the
boundedness of T, = s(x) <m. Next (M4) is implied by the fact that M’(y) >0 for all
y€[0,1] acccording to (15). Condition (M6) follows from the continuity of
yM’(y) = Var,[s(X)]. Hence (M1)-(M6) hold, and we may apply the clipped version of the
R-M procedure. O

As a numerical example, Fig. 2(a) shows a simulated realization of a Strauss process having
25 points in a unit square with r = 0.15 and y = 0.1. In this case s(x) = 4 and this is indicated
in the figure by lines joining the pairs of points which are neighbours. An accurate value of
the MLE is $ = 0.099, obtained from the exhaustive simulations described in section 3.

Figures 2(b) and 2(c) show typical runs of the algorithm with 4 =1 and 4 = A4, =
1/M’(7) = 0.04 respectively. As expected, variability is much reduced when A4, is used. The
theoretical asymptotic standard errors of y, were 0.23/\/1; and‘0.06/\/1'c respectively. Sample
fluctuations of the y, sequence die down much more rapidly in the optimal case, at roughly
the rate suggested by the ratio of asymptotic variances u?/(2u — 1) = 0.23%/0.06% = 14.7.
Similar results were obtained with other values of n, r and s(x).
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Fig. 2. (a) Simulated realization of a Strauss process, 25 points in the unit square with r =0.15 and
y = 0.1. (b) Sequential plot of the R—M estimate of y for the simulated data in Fig. 2(a) with s(x) =4
and 4 = 1. Dotted line shows the MLE of y = 0.099. (c) As in (b) with 4 =4, =0.04.

6. Conclusions and discussion

The use of the optimal rate constant in the R—M method can dramatically improve
performance. Note that the larger the value of u, the greater this improvement.

The starting value y, is arbitrary, but should be set to an initial approximation such as that
holding in the sparse case (i.e. derived from the Poisson approximation to {p,,}, Ripley
1988)

_ 2s(x) area(W)
7 n(n - Dmr?

This approximation should also be used to provide initial values of u and a2 for choosing
the value of A4 and estimating the asymptotic variance of y,. Thus 4,,, would be estimated
as

2 area(W)
n(n — Drr?’
It is also possible to obtain consistent estimates of u and o2 during the R—M iteration step,
using the simulated data; see Dupa¢ (1984). This would allow us to adjust 4 dynamically to

its optimal value, and to estimate the standard error of y, consistently. This would probably
turn out to be cheaper than Penttinen’s (1984) method, where one is required to simulate
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from the Strauss process to get estimates of the mean and mean derivative of the efficient
score for every update of the parameter.

However, the number of iterations of the R—M procedure can be decided in advance. The
variance of § itself is approximately

.))2

Var, [s(x)]

using the delta method (note that we are not in a position to apply usual asymptotic results
for MLE’s). Our results give for the optimal 4

Var(y) =

')'2

k Var,[s(x)]’

so that after & iterations (with the optimal parameter settings) the variance due to stochastic
approximation is approximately a fraction 1/(k + 1) of the total variance of estimation.
Twenty iterations would often suffice.

A remaining problem with the R—M procedure (and all simulation-based procedures) is
that, for a stochastic model which can only be simulated and not treated analytically, it is not
possible to identify the regions of the sample space that correspond to values of the
maximum likelihood estimate lying on the boundary of the parameter space. In our case, the
values K and M(1) in (16) are not known analytically, and would have to be estimated by
simulation.

This is not a serious problem for the upper limit M(1), since we may run simulations of
the conditional model for y > 1, and simply allow y, to exceed 1, instead of clipping to [0, 1].
A final value of y, greater then 1 indicates § =1 for the parameter space [0, 1]. If y, is much
greater than 1, the practical interpretation might be that r is too large, or that the model (3)
is wrong.

However, if the lower limit K is positive, and the R—M process gives y, =0 for some k,
then the standard birth-and-death process simulations (see Ripley 1977, 1979 and Baddeley
& Mopller, 1989) will go into an infinite loop because they use the rejection method in a
situation where the success probability is zero. In case W is convex, a sufficient condition for
K >0 is that nnr2/4 > area(W) + r length(dW) + nr2, but there are marginal values of r
below this limit where K > 0 still. One response would be to set an upper limit to the number
of rejections that would be allowed during the birth of a new point in the spatial
birth-and-death process simulations. When this limit is exceeded, y, may be put slightly
above zero and one can then continue with the iterations. This would be in the style of (24)
but we have not yet investigated it. An alternative would be to recast the entire estimation
problem in terms of { =logy thereby avoiding simulations of the hard core process.

Another unanswered question about the simulations is whether the long (theoretically
infinite) time required for running a spatial birth-and-death process to equilibrium could be
avoided by using shorter runs. This would introduce bias at each step, and dependence
between steps if the birth/death simulations of X, started with X, | as the initial state.

We have also ignored important questions (raised e.g. by Ripley, 1988) about the
desirability of maximum likelihood estimators, the applicability of Markov point process
models to real data, and the role of edge effects, since these do not bear on the technique
itself.

Varopt (7k ) =
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